skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, I-Ting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host’s independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions. Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic (anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract The large-scale and nonaseptic fermentation of sugarcane feedstocks into fuel ethanol in biorefineries represents a unique ecological niche, in which the yeast Saccharomyces cerevisiae is the predominant organism. Several factors, such as sugarcane variety, process design, and operating and weather conditions, make each of the ∼400 industrial units currently operating in Brazil a unique ecosystem. Here, we track yeast population dynamics in 2 different biorefineries through 2 production seasons (April to November of 2018 and 2019), using a novel statistical framework on a combination of metagenomic and clonal sequencing data. We find that variation from season to season in 1 biorefinery is small compared to the differences between the 2 units. In 1 biorefinery, all lineages present during the entire production period derive from 1 of the starter strains, while in the other, invading lineages took over the population and displaced the starter strain. However, despite the presence of invading lineages and the nonaseptic nature of the process, all yeast clones we isolated are phylogenetically related to other previously sequenced bioethanol yeast strains, indicating a common origin from this industrial niche. Despite the substantial changes observed in yeast populations through time in each biorefinery, key process indicators remained quite stable through both production seasons, suggesting that the process is robust to the details of these population dynamics. 
    more » « less